PAPER - II MATHEMATICS

1.	A class has 175 students. The following data shows the number of students optim more subjects. Maths 100, Physics 70, Chemistry 78, Maths and Physics 30, M. Chemistry 38, Physics and Chemistry 23, Maths, Physics and Chemistry 18. He have opted for Maths alone?			nd Physics 30, Maths and Chemistry 18. How many	
		(b) 48	(c) 50	(d) 22	
2.	The void relation on	a set A is			
	(a) reflexive	 5 5 5	(b) symmetric and	transitive	
	(c) reflexive and tran	sitive	(d) reflexive and sy		
3.	If $e^{f(x)} = \frac{10+x}{10-x}, x \in$	(-10, 10) and $f(x) = kf(b) 0.6$	$\left(\frac{200x}{100+x^2}\right), \text{ then } k =$		
	(a) 0.5	(b) 0.6	(c) 0.7	(d) 0.8	
				A S T S S S S S S S S S S S S S S S S S	
4.	On the set of integers	$s Z$, define $f: Z \to Z$ as for	ollows $f(x) = \begin{cases} \frac{x}{2} & \text{if } \\ 0 & \text{if } \end{cases}$	$\begin{cases} x \text{ is even} \\ f x \text{ is odd} \end{cases}$, than f is	
	(a) onto but not one-	one	(b) one-one and on	to	
	(c) one-one but not o	onto	(d) into		
5.	If z is a complex num	nber such that $ z = 4$ and	d arg $(z) = \frac{5\pi}{6}$, then	z is equal to	
	(a) $-2\sqrt{3} + 2i$	(b) $2\sqrt{3} + 2i$	(c) $2\sqrt{3} - 2i$	(d) $-\sqrt{3} + i$	
6.	If $ z + \overline{z} = z - \overline{z} $, then	nen the locus of z is a	11 40	nce	
	(a) pair of straight lin		(b) rectangular hyp	erbola	
	(c) straight line		(d) set of four straig	ght line	
9		_	1		
7.	If x , a , b , c are real and	and $(x-a+b)^2 + (x-b+a)^2$	$(c)^2 = 0$, then a, b, c	are in	
	(a) H.P.	(b) G.P.	(c) A.P.	(d) none of these	
8.	The conditions that t (a) a , b and c are of t	the equation $ax^2 + bx + c$	= 0 has both roots po	ositive is that	
	(b) a and b are of sar				
	(c) b and c have the same sign opposite to that of a and $D > 0$ (d) a and c have the same sign opposite to that of b and $D > 0$				
	(u) a and c have the	same sign opposite to the	0 0 0 and D > 0		
9.	Solution of $ x-1 \ge $	x-3 is	12 -		
	(a) $x \le 2$	(b) $x \ge 2$	(c) [1, 3]	(d) none of these	

10. If 1, $\log_9(3^{1-x}+2)$, $\log_3(4\cdot 3^x-1)$ are in A.P., then *x* equals

11.	The sum of all 2 digit (a) 2475	t odd numbers is (b) 2530	(c) 4905	(d) 5049
12.	Maximum value of s	$\sin^4\theta + \cos^6\theta$ is		ace I
	(a) $\frac{3}{4}$		(c) $\frac{1}{2}$	(d) none of these
13.	BOY LOT	5 then $4 \sin x - 3 \cos x$ is (b) 1	s equal to (c) 5	(d) none of these
14.	The most general val	ue of θ which satisfies si	$n \theta = \frac{1}{2}$, $\tan \theta = \frac{1}{\sqrt{3}}$	is is
	(a) $2n\pi + \frac{\pi}{6}$	(b) $2n\pi + \frac{\pi}{4}$	(c) $2n\pi + \frac{\pi}{3}$	(d) $2n\pi + \frac{\pi}{2}$
15.	If $b + c = 3a$, then the value of $\cot \frac{B}{2} \cot \frac{C}{2}$ is equal to			
	(a) 1	(b) 2	(c) $\sqrt{3}$	(d) $\sqrt{2}$
16.	A man standing on a horizontal plane observes the angle of elevation of the top of a tower to be α . After walking a distance equal to double the height of the tower, towards the tower the angle of elevation becomes 2α , than α is			
	(a) $\frac{\pi}{18}$	(b) $\frac{\pi}{12}$	(c) $\frac{\pi}{6}$	(d) $\frac{\pi}{2}$
17.	The equation $\sin^{-1} x$	$= 2 \sin^{-1} a$ has a solution	n WEntra	111
	(a) in all values of a	_	(c) $ a \ge \frac{1}{\sqrt{2}}$	(d) $ a \le \frac{1}{\sqrt{2}}$
18.				ne centroid of this triangle
	moves on the line $2x$ (a) $2x + 3y = 9$	+ $3y = 1$, then the locus (b) $2x - 3y = 7$	of the vertex C will be $(c) 3x + 2y = 5$	(d) $3x - 2y = 3$
19.	The line $x + y = 4$ div (a) 2:3	rides the line joining the (b) 1:2	points (-1, 1) and (5 (c) 1:1	(d) 4:3
20.	The pair of points who (a) $(0, -1)$; $(0, 0)$ (c) $(-1, -1)$; $(3, 7)$	ich lie on the same side	of the straight line 3x (b) (24, -3); (1, 1) (d) (0, 1); (3, 0)	•
21.	The angle between tw	wo tangents drawn from	the origin to the circ	cle $(x-7)^2 + (y+1)^2 = 25$

is

(a) $\log_3 4$ (b) $1 - \log_4 3$ (c) $1 - \log_3 4$ (d) $\log_4 3$

(a) $\frac{\pi}{3}$	(b) $\frac{\pi}{6}$	(c) $\frac{\pi}{2}$	(d) 0			
The equation of	f the circle having its cen	tre on the line $x + 2y$	y - 3 = 0 and passing the	ırough		
the points	of intersection of	the circles x	$x^2 + y^2 - 2x - 4y + 1 = 0$	and		
$x^2 + y^2 - 4x - 2$	2y + 4 = 0 is	7.	ance			
(a) $x^2 + y^2 - 6x$	x + 7 = 0	(b) $x^2 + y^2 - 3$	y + 4 = 0			
(c) $x^2 + y^2 - 2x$	x-2y+1=0	(d) $x^2 + y^2 - 2$	x-4y+4=0			
If $2x^2 + \lambda xy + 2y^2 + (\lambda - 4)x + 6y - 5 = 0$ is the equation of a circle then its radius is						
(a) $3\sqrt{2}$	(b) $2\sqrt{3}$	(c) $2\sqrt{2}$	(d) none of these			
The normal to the parabola $y^2 = 8x$ at the point (2, 4) meets the parabola again at the point						
(a) $(-18, -12)$	(b) (-18, 12)	(c) (18, 12)	(d) $(18, -12)$			
	ance	a lule	ntra			
The equation of the directrix of the parabola $y^2 + 4y + 4x + 2 = 0$ is						
(a) $x = -1$	(b) $x = 1$	(c) $x = -\frac{3}{2}$	(d) $x = \frac{3}{2}$			
		2	7			

- The angle between pair of tangents drawn to the ellipse $3x^2 + 2y^2 = 5$ from the point (1, 2) **26.**

22.

23.

24.

25.

- (a) $\tan^{-1} \frac{12}{5}$ (b) $\tan^{-1} \frac{6}{\sqrt{5}}$ (c) $\tan^{-1} \frac{12}{\sqrt{5}}$

- The equation of the hyperbola whose foci are (6, 5), (-4, 5) and eccentricity $\frac{5}{4}$ is 27.
 - (a) $\frac{(x-1)^2}{16} \frac{(y-5)^2}{9} = 1$

(b) $\frac{x^2}{16} - \frac{y^2}{0} = 1$

(c) $\frac{(x-1)^2}{16} - \frac{(y-5)^2}{9} = -1$

- (d) none of these
- 10 different letters of English alphabet are given. Words of 5 letters are formed from these 28. given letters. How many words are formed when at least one letter is repeated?
 - (a) 69760
- (b) 98748
- (c) 96747
- (d) 97147
- **29.** Total number of four digit odd numbers that can be formed using 0, 1, 2, 3, 5, 7 are (repetition allowed) (c) 400
 - (a) 216
- (b) 375
- (d) 720

30.
$$({}^{10}C_0)^2 - ({}^{10}C_1)^2 + \dots - ({}^{10}C_9)^2 + ({}^{10}C_{10})^2$$
 equals
(a) ${}^{10}C_5$ (b) $-{}^{10}C_5$ (c) $({}^{10}C_5)^2$

- (d) $(10!)^2$

31. The coefficient of
$$x^{32}$$
 in the expansion of $\left(x^4 - \frac{1}{x^3}\right)^{15}$ is

(a)
$$-^{15}C_{2}$$

(b)
$$^{15}C_{2}$$

(c)
$$-^{15}C_5$$

(d)
$$^{15}C_2$$

1. The coefficient of
$$x$$
 in the expansion of $\begin{pmatrix} x & x^3 \end{pmatrix}$ is

(a) $-{}^{15}C_3$ (b) ${}^{15}C_4$ (c) $-{}^{15}C_5$ (d) ${}^{15}C_2$

32. The value of $\begin{bmatrix} 7 & 1 & 2 \\ 9 & 2 & 1 \end{bmatrix} \begin{bmatrix} 3 \\ 4 \\ 5 \end{bmatrix} + 2 \begin{bmatrix} 4 \\ 2 \end{bmatrix}$ is equal to

(a) $\begin{bmatrix} 43 \\ 44 \end{bmatrix}$ (b) $\begin{bmatrix} 43 \\ 45 \end{bmatrix}$ (c) $\begin{bmatrix} 45 \\ 44 \end{bmatrix}$ (d) none of $\begin{bmatrix} a+b & a+2b & a+3b \\ 2 & 3b & 3b \end{bmatrix}$

(a)
$$\begin{bmatrix} 43 \\ 44 \end{bmatrix}$$

(b)
$$\begin{bmatrix} 43 \\ 45 \end{bmatrix}$$

(c)
$$\begin{bmatrix} 45 \\ 44 \end{bmatrix}$$

(d) none of these

33. The value of
$$\begin{vmatrix} a+b & a+2b & a+3b \\ a+2b & a+3b & a+4b \\ a+4b & a+5b & a+6b \end{vmatrix}$$
 is equal to

(a)
$$a^3 + b^3 + c^3 - 3abc$$

(c) 0

al to

(b)
$$a^3+b^3+c^3$$

(d) none of these

34. If
$$I_3$$
 is the identity matrix of order 3, then I_3^{-1} is

(b)
$$3I_3$$

(c)
$$I_3$$

(d) does not exist

35. Domain of
$$\sin^{-1} \left[\log_3 \left(\frac{x}{3} \right) \right]$$
 is

(a) [1, 9] (b) [-1, 9]

(c)
$$[-9, 1]$$

(d)
$$[-9, -1]$$

(a)
$$[1, 9]$$
 (b) $[-1, 9]$ (c) $[-9, 1]$

36. Range of $f(x) = \cos 2x - \sin 2x$, is the set

(a) $[-\sqrt{2}, \sqrt{2}]$ (b) $[-1, 1]$ (c) $[-2, 2]$

(a)
$$[-\sqrt{2}, \sqrt{2}]$$

(b)
$$[-1, 1]$$

(c)
$$[-2, 2]$$

(d) none of these

37.
$$\lim_{x \to 1} \frac{\sin (e^{x-1} - 1)}{\log x}$$
 is

(d) none of these

38. If the function
$$f(x) = \begin{cases} \frac{x^2 - (A+2)x + A}{x-2} & \text{for } x \neq 2 \\ 2 & \text{for } x = 2 \end{cases}$$
 is continuous at $x = 2$, then

(a)
$$A = 0$$

(b)
$$A = 1$$

(c)
$$A = -1$$

(d) none of these

39. Which of the following functions is differentiable at
$$x = 0$$
?

(a)
$$\cos(|x|) + |x|$$

(b)
$$\cos(|x|) - |x|$$

(c)
$$\sin(|x|) + |x|$$

(d)
$$\sin(|x|) - |x|$$

- Left hand derivative of $\sec^{-1}\left\{\frac{1}{2x^2-1}\right\}$ with respect to $\sqrt{1+3x}$ at $x=-\frac{1}{3}$ is **40.**
 - (a) 0
- (c) $\frac{1}{2}$
- (d) does not exist

- If $f(x) = xe^{x(1-x)}$, then f(x) is 41.
 - (a) increasing on $\left| -\frac{1}{2}, 1 \right|$

(b) decreasing on R

(c) increasing on R

- (d) decreasing on $\left| -\frac{1}{2}, 1 \right|$
- If f(x) = x(x-2)(x-4), $1 \le x \le 4$, then a number satisfying the conditions of the **42.** Lagrange's mean value theorem is
 - (a) 1

- $(d) \frac{7}{2}$

- $\int \frac{1+x+\sqrt{x+x^2}}{\sqrt{x+x^2}} dx$ is equal to 43.
 - (a) $\frac{1}{2}\sqrt{1+x} + C$

(b) $\frac{2}{3}(1+x)^{3/2}+C$

(c) $\sqrt{1+x} + C$

(d) $2(x+1)^{3/2} + C$ (c) $\frac{8}{3}$ (d) $\frac{4}{3}$

- 44. $\int_{0}^{2} x^{2}[x] dx$ is equal to (a) $\frac{5}{2}$

- If $f(x) = \int_{1}^{x^3} \frac{dt}{\log t}$; x > 0, then 45.
 - (a) $f'(x) = -\frac{1}{6} \log x$

(b) f is an increasing function

(c) f has minimum at x = 1

- (d) none of these
- The area bounded by the curve $y = 4x x^2$ and x-axis is

 (a) $\frac{30}{7}$ sq. units
 (b) $\frac{31}{7}$ sq. units
 (c) $\frac{32}{3}$ sq. units
 (d) $\frac{34}{3}$ sq. units **46.**

The solution of the equation $\frac{dy}{dx} = \frac{x(2 \log x + 1)}{\sin y + y \cos y}$ is 47.

(a)	$y\sin y = x^2 \log$	$x + \frac{x^2}{2} + \epsilon$
		_

(b)
$$y \cos y = x^2 (\log x + 1) + c$$

(c)
$$y \cos y = x^2 \log x + \frac{x^2}{2} + c$$

(d)
$$y \sin y = x^2 \log x + c$$

The probability of a man hitting a target is $\frac{3}{4}$. He tries 5 times. The probability that the 48. target will be hit at least 3 times, is

(a)
$$\frac{291}{364}$$

(b)
$$\frac{371}{464}$$

(c)
$$\frac{471}{502}$$

(d)
$$\frac{459}{512}$$

49. The mean and variance of a binomial variable X are 2 and 1 respectively, then $P(X \ge 1)$ is

(a)
$$\frac{2}{3}$$

(b) $\frac{4}{5}$

(c) $\frac{7}{8}$

(d) $\frac{15}{16}$

In 324 throws of 4 dice, the expected number of times 3 sixes occur is **50**.

(a) 81

If $\vec{a} = -3\hat{i} + 7\hat{j} + 5\hat{k}$, $\vec{b} = -3\hat{i} + 7\hat{i} - 3\hat{k}$ and $\vec{c} = 7\hat{i} - 5\hat{j} - 3\hat{k}$ are three coterminous edges of a 51. parallelepiped, then its volume is

(a) 108

(c) 272

If \vec{a} , \vec{b} , \vec{c} are non-coplanar unit vectors such that $\vec{a} \times (\vec{b} \times \vec{c}) = \frac{\vec{b} + \vec{c}}{\sqrt{2}}$, then angle between \vec{a} 52. and \vec{b} is

(c) $\frac{\pi}{2}$

The perpendicular distance of the point (2, 4, -1) from the line $\frac{x+5}{1} = \frac{y+3}{4} = \frac{z-6}{-9}$ is **53.**

(a) 3

(b) 5

The equation of sphere, which passes through the intersection of the sphere 54. $x^{2} + y^{2} + z^{2} = 9$ and the plane 2x + 3y + 4z = 5 and through the point (1, 2, 3) is

(a)
$$3(x^2 + y^2 + z^2) - 2x - 3y - 4z - 22 = 0$$
 (b) $(x^2 + y^2 + z^2) - 2x - 3y - 4z - 22 = 0$

(b)
$$(x^2 + y^2 + z^2) - 2x - 3y - 4z - 22 = 0$$

(c)
$$3(x^2 + y^2 + z^2) + 2x + 3y + 4z - 22 = 0$$
 (d) $3(x^2 + y^2 + z^2) - 2x - 3y - 4z + 22 = 0$

(d)
$$3(x^2 + y^2 + z^2) - 2x - 3y - 4z + 22 = 0$$

55.	A particle has three velocities 5 m/sec, 10 m/sec and 15 m/sec inclined at angles of 120° to one another. The resultant velocity is			
	(a) $5\sqrt{3}, 30^{\circ}$	(b) $5\sqrt{3}, 210^{\circ}$	(c) 5, 210°	(d) none of these
56.	-	g 1 kg falling with un tant pressure of air on	the parachute is	om rest describes 16 m in
	(a) 8.7 N	(b) 7.8 N	(c) 9.8 N	(d) none of these
57.	The maximum value		of constraints $5x + 2y$	$\leq 10, x \geq 0, y \geq 0$ is
	(a) 6	(b) 10	(c) 15	(d) 25
58.	Ranks of 10 students of a class in two subjects are (1, 10), (2, 9), (3, 8), (4, 7), (5, 6), (6, 5), (7, 4), (8, 3), (9, 2), (10, 1), then rank correlation coefficient is			
	(a) 0	(b) -1	(c) 1	(d) 0.5
59.	If $4^{\log_9 3} + 9^{\log_2 4} = 10^{\log_x 83}$, $(x \in R)$, then x is			
	(a) 4	(b) 9	(c) 10	(d) none of these
60.	If $f(x) = x^{\alpha} \log x$ a applied in [0, 1], is	$\operatorname{nd} f(0) = 0, \text{ then the}$	e value of α for which	ch Rolle's theorem can be
	(a) - 2	(b) -1	(c) 0	(d) $\frac{1}{2}$
61.	If $4a^2 + 9b^2 + 16c^2 = 2$ in	2(3ab + 6bc + 4ca), wh	ere a, b, c are nonzero	o numbers, then a , b , c are
	(a) A.P.	(b) G.P.	(c) H.P.	(d) none of these
62.	Let a, b be two posit Then a is	ive numbers, where <i>a</i>	$a > b$ and $4 \times G.M. = 3$	$5 \times \text{H.M.}$ for the numbers.
	(a) 4b	(b) $\frac{1}{4}b$	(c) 2b	(d) <i>b</i>
63.	The solution set of $\frac{\lambda}{\lambda}$	$\frac{x+1}{x} + x+1 = \frac{(x+1)^2}{ x }$	is	
	(a) $\{x \mid x \ge 0\}$ (c) $\{-1, 1\}$		(b) $\{x \mid x > 0\} \cup \{-1\}$	
	(c) $\{-1, 1\}$		(d) $\{x \mid x \ge 1 \text{ or } x \le -1\}$	Co
64.	If one root of the equ value	ation $(k^2 + 1)x^2 + 13x$	x + 4k = 0 is reciprocal	of the other then k has the
		(b) $2 - \sqrt{3}$	(c) 1	(d) none of these

65.	If $\frac{1}{4-3i}$ is a root of	$ax^2 + bx + 1 = 0$, wher	e a, b are real, then	
	1 31			(d) none of these
66.	If $(x-1)^4 - 16 = 0$ th	en the s <mark>um of</mark> non rea	l complex values of	
	(a) 2	(b) 0	(c) 4	(d) none of these
67.		then for the $\triangle ABC$, e^{i}		
	(a) $-i$	(b) 1	(c) -1	(d) none of these
68.		of words that can at no vowel is between (b) 1800	•	ing the letters of the word (d) none of these
69.	In a polygon the num	nber of diagonals is 5	4. The number of sic	- Am
	(a) 10	(b) 12	(c) 9	(d) none of these
70.	If $\Delta_1 = \begin{vmatrix} 1 & 1 & 1 \\ a & b & c \\ a^2 & b^2 & c^2 \end{vmatrix}$	$, \Delta_2 = \begin{vmatrix} 1 & bc & a \\ 1 & ca & b \\ 1 & ab & c \end{vmatrix} $ then		
		(b) $\Delta_1 + 2\Delta_2 = 0$		(d) none of these
71.	The system of equ	A STATE OF THE PARTY OF THE PAR	x - 2y + z = 0 an	d $\lambda x - y + 2z = 0$ has infinite
	1-1-strano		(c) $\lambda = -5$	(d) no real value of λ
72.	If the coefficients of are equal then the va		nd the $(m+3)$ th term	m in the expansion of $(1 + x)^{20}$
	(a) 10	(b) 8	(c) 9	(d) none of these
73.	The coefficient of x^6	in $\{(1+x)^6 + (1+x)^7 \}$	$+ \dots + (1+x)^{15}$ is	
	(a) $^{16}C_9$	(b) ${}^{16}C_5 - {}^6C_5$	(c) $^{16}C_6 - 1$	(d) none of these
74.	The sum $\frac{1}{2}^{10}C_0 - \frac{10}{2}$	$C_1 + 2^{10}C_2 - 2^2^{10}C_3 +$	$+2^{9.10}C_0$ is equal	l to
	(a) $\frac{1}{2}$	(b) 0	(c) $\frac{1}{2}.3^{10}$	(d) none of these
75.	If $A = \begin{bmatrix} 1 & \omega & \omega \\ \omega & \omega^2 & 1 \\ \omega^2 & 1 & \omega \end{bmatrix}$	$\begin{bmatrix} A & A & A & A \\ A & A & A \\ A & A & A \end{bmatrix}, B = \begin{bmatrix} A & A & A \\ A & A & A \\ A & A & A \end{bmatrix}$	and $C = \begin{bmatrix} 1 \\ \omega \\ \omega^2 \end{bmatrix}$ wher	l to (d) none of these re ω is the complex cube root
	of 1 then $(A+B)C$ i			

(a)
$$\begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$
 (b)
$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$
 (c)
$$\begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$$
 (d)
$$\begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$$

(c)
$$\begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$$

$$(d) \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$$

 $\sum_{n=1}^{\infty} \frac{1}{2n(2n+1)}$ is equal to **76.**

(a)
$$\log_e \left(\frac{2}{e}\right)$$

(b)
$$1 - \log_e 2$$

(c)
$$1 - \log_e \frac{1}{2e}$$

(d) none of these

(a) $\log_e \left(\frac{2}{e}\right)$ (b) $1 - \log_e 2$ (c) $1 - \log_e \frac{1}{2e}$ (d) no If |x| < 1, the coefficient of x^3 in the expansion of $\frac{1}{e^x \cdot (1+x)}$ is 77.

(a)
$$\frac{8}{3}$$

(b)
$$-\frac{8}{3}$$

(c)
$$-\frac{11}{6}$$

(d) none of these

78. The minimum value of $\cos 2\theta + \cos \theta$ for real values of θ is

(a)
$$-\frac{9}{8}$$

(c)
$$-2$$

(d) none of these

If $\tan \frac{\alpha}{2}$ and $\tan \frac{\beta}{2}$ are the roots of the equation $8x^2 - 26x + 15 = 0$ then $\cos(\alpha + \beta)$ is equal to **79.**

(a)
$$-\frac{627}{725}$$

(b)
$$\frac{627}{725}$$

(c)
$$-1$$

(d) none of these

Let $f(x) = \sec^{-1} x + \tan^{-1} x$. Then f(x) is real for **80.**

(a) $x \in [-1,1]$

(b) $x \in R$

(c) $x \in (-\infty, -1] \cup [1, \infty)$

(d) none of these

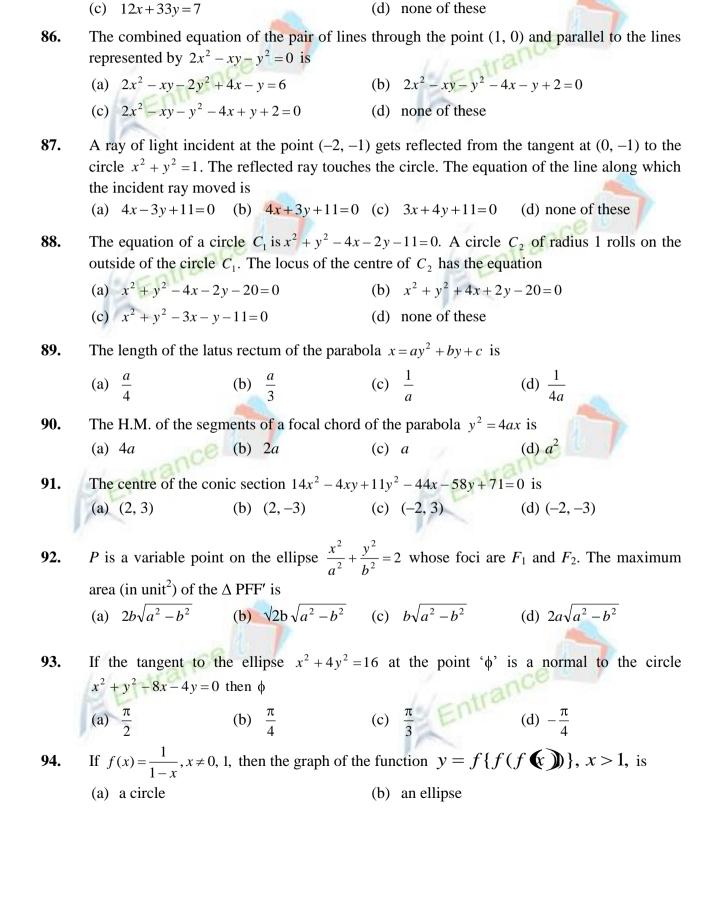
The value of $\tan \left\{ 2 \tan^{-1} \frac{1}{5} - \frac{\pi}{4} \right\}$ is 81.

- (a) 0
- (b) 1

(d) none of these

82. The number of solutions of $\log_2(x+5) = 6 - x$ is

- (a) 2


(d) none of these

In a $\triangle ABC$, a = 5, b = 4 and $\tan \frac{C}{2} = \sqrt{\frac{7}{9}}$. The side c is 83.

(c) 2 (d) none of these If in a $\triangle ABC$, 3a = b + c then $\tan \frac{B}{2} \cdot \tan \frac{C}{2}$ is equal to (a) $\tan \frac{A}{2}$ **84.**

- (a) $\tan \frac{A}{2}$
- (b) 1
- (c)

(d) none of these

A family of lines is given by $(1+2\lambda)x+(1-\lambda)y+\lambda=0,\lambda$ being the parameter. The line

(b) 33x + 12y + 7 = 0

belonging to this family at the maximum distance from the point (1, 4) is

85.

(a) 4x - y + 1 = 0

(c) a straight line

- (d) a pair of straight lines
- Let $f:(-\infty,1] \to (-\infty,1]$ such that f(x) = x(2-x). Then $f^{-1}(x)$ is

 (a) $1 + \sqrt{1-x}$ (b) $1 \sqrt{1-x}$ (c) $\sqrt{1-x}$ 95.

- (d) none of these
- The derivative of $\tan^{-1} \frac{\sqrt{1+x^2-1}}{x}$ with respect to $\tan^{-1} x$ is

 (a) $\frac{\sqrt{1+x^2-1}}{x^2}$ (b) 1 (c) $\frac{1}{1+x^2}$ (d) none 96.

- (d) none of these

- $\lim_{x\to 0} \frac{(1+x+x^2)-e^x}{x^2}$ is equal to **97.**
 - (a) 1
- (b) 0
- (c) $\frac{1}{2}$
- (d) none of these
- Let $s_n = \frac{1}{1.4} + \frac{1}{4.7} + \frac{1}{7.10} + \dots$ to *n* terms. Then $\lim_{n \to \infty} s_n$ is equal to

 (a) $\frac{1}{3}$ (b) 3 (c) $\frac{1}{4}$ (d) ∞ 98.

- Let y = |x| + |x 2|. Then $\frac{dy}{dx}$ at x = 2 is 99.
 - (a) 2
- (b) 0
- (c) does not exist
- (d) none of these
- A function f(x) is defined as below $f(x) = \frac{\cos(\sin x) \cos x}{x^2}$, $x \ne 0$ and f(0) = a. f(x) is 100. (d) 6 continuous at x = 0 if a equals (a) 0
- (b) 4

