PAPER - II MATHEMATICS

9.	If n arithmetic means are inserted between 2 and 38, and the sum of the resulting series is obtained as 200, then the value of n is					
	(a) 6	(b) 8	(c) 9	(d) 10		
10.		between $y - x$ and $y - z$ (b) G.P.	, then $x - a$, $y - a$, $z - a$ (c) H.P.	a are in (d) none of these		
11.	6/-ntrain	d $x^2 - 3x - 4 < 0$, then	6/Entran	ce		
	(a) $x > 3$	(b) $x < 4$	(c) $3 < x < 4$	(d) $x = \frac{7}{2}$		
12.	Given 5 line segment formed by joining the		units. Then the numb	per of triangles that can be		
	(a) 4C_3	(b) ${}^5C_3 - 3$	(c) ${}^5C_3 - 2$	(d) ${}^5C_3-1$		
13.	The number of 3 digit numbers lying between 100 and 999 inclusive and having only two consecutive digits identical is					
	(a) 100	(b) 162	(c) 150	(d) none of these		
14.	The greatest positive N , is	integer, which divides ((n+16)(n+17)(n+17)	+ 18) $(n + 19)$, for all $n \in$		
	(a) 2	(b) 4	(c) 24	(d) 120		
15.	Coefficient of x^{-4} in	$\left(\frac{3}{2} - \frac{3}{x^2}\right)^{10}$ is	(c) $\frac{450}{250}$	ance		
	(a) $\frac{405}{226}$	(b) $\frac{504}{289}$	(c) $\frac{450}{263}$	(d) none of these		
16.	The coefficient of x^{53} in $\sum_{r=0}^{100} {}^{100}C_r(x-3)^{100-r}2^r$ is					
				(d) $^{100}C_{54}$		
17.	(a) $^{100}C_{51}$ (b) $^{100}C_{52}$ (c) $^{-100}C_{53}$ (d) $^{100}C_{54}$ If $4^{\log_9 3} + 9^{\log_2 4} = 10^{\log_x 83}$, $(x \in R)$ then x is (a) 4 (b) 9 (c) 10 (d) none of these					
17	(a) 4	(b) 9	(c) 10	(d) none of these		
18.	The maximum value of $12\sin\theta - 9\sin^2\theta$ is					
	(a) 3	(b) 4	(c) 5	(d) none of these		
19.	If $\tan (\pi \cos x) = \cot (\pi \cos x)$	$(\pi \sin x)$, then $\cos \left(x - \frac{\pi}{4}\right)$	$\left(\frac{1}{2}\right)$ is			

(a)
$$\frac{1}{\sqrt{2}}$$

$$(b) \ \frac{1}{2\sqrt{2}}$$

(d) none of these

General solution for θ if $\sin\left(2\theta + \frac{\pi}{6}\right) + \cos\left(\theta + \frac{5\pi}{6}\right) = 2$, is 20. (a) $2n\pi + \frac{7\pi}{6}$ (b) $2n\pi + \frac{\pi}{6}$ (c) $2n\pi - \frac{7\pi}{6}$ (d) none of these

(a)
$$2n\pi + \frac{7\pi}{6}$$

(b)
$$2n\pi + \frac{\pi}{6}$$

(c)
$$2n\pi - \frac{7\pi}{6}$$

In a $\triangle ABC$ if $a^2 \sin (B-C) + b^2 \sin (C-A) + c^2 \sin (A-B) = 0$, then triangle is 21.

- (a) right angled
- (b) obtuse angled
- (c) isosceles

(d) none of these

If |y| < |x| and xy > 0, then the value of $\tan^{-1} \frac{x}{y} - \tan^{-1} \frac{x-y}{x+y}$ is equal to

(a) $\frac{\pi}{2}$ (b) $\frac{\pi}{3}$ (c) $\frac{\pi}{4}$ (d) $-\frac{3\pi}{4}$ 22.

(a)
$$\frac{\pi}{2}$$

(b)
$$\frac{\pi}{3}$$

(c)
$$\frac{\pi}{4}$$

If a point P(2, 3) is shifted by a distance $\sqrt{2}$ units parallel to the line y = x then coordinates 23. of P in the new position are

(b)
$$(2+\sqrt{2},3+\sqrt{2})$$

(c)
$$(2-\sqrt{2},3-\sqrt{2})$$

(d) none of these

The line (a + b) x + (a - b) y = 2a + 3b (where $a, b \ne 0, b \in R$) always passes through the 24. (a) $\left(\frac{5}{2}, \frac{1}{2}\right)$ (b) $\left(\frac{5}{2}, \frac{-1}{2}\right)$ (c) $\left(\frac{-5}{2}, \frac{-1}{2}\right)$

(a)
$$\left(\frac{5}{2}, \frac{1}{2}\right)$$

(b)
$$\left(\frac{5}{2}, \frac{-1}{2}\right)$$

(c)
$$\left(\frac{-5}{2}, \frac{-1}{2}\right)$$

(d)
$$\left(\frac{-5}{2}, \frac{1}{2}\right)$$

(0,0) and $(3,3\sqrt{3})$ are two vertices of an equilateral triangle, then the third vertex is 25.

(a)
$$(3, -3)$$

(c)
$$(-3, 3\sqrt{3})$$

(d) none of these

Equation of a circle through (-1, -2) and concentric with $x^2 + y^2 - 3x + 4y - c = 0$ is

(a) $x^2 + y^2 - 3x + 4y - 1 = 0$ (b) $x^2 + y^2 - 3x + 4y = 0$ **26.** circle

(a)
$$x^2 + y^2 - 3x + 4y - 1 = 0$$

(b)
$$x^2 + y^2 - 3x + 4y = 0$$

(c)
$$x^2 + y^2 - 3x + 4y + 2 = 0$$

(d) none of these

Let the circles $x^2 + y^2 + 6x + k = 0$ and $x^2 + y^2 + 8y - 20 = 0$ touching each other 27. internally, then value of k is

(d) none of these

28.	Equation of tang	ent to the parabola	$y^2 = 4ax$	parallel to $y = 2x + 3$ is
-----	------------------	---------------------	-------------	-----------------------------

- (a) y = 2x + a (b) 2y = 4x a (c) 2y = 4x + a (d) none of these

29. Angle subtended by latus rectum of
$$y^2 = 4x$$
 at the origin is

(a)
$$\pi - \tan^{-1}\left(\frac{4}{3}\right)$$
 (b) $\pi - \tan^{-1}\left(\frac{3}{4}\right)$ (c) $\tan^{-1}\frac{4}{3}$ (d) none of these

30. If $\sqrt{3}bx + ay = 2ab$ is tangent to the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ at point P of the point P , then eccentric angle θ is

(a)
$$\frac{\pi}{4}$$
 (b) $\frac{\pi}{6}$ (c) $\frac{\pi}{2}$ (d) $\frac{\pi}{3}$

31. For the hyperbola $\frac{x^2}{\cos^2 \theta} - \frac{y^2}{\sin^2 \theta} = 1$, which of the following remains constant with change in θ

(a) abscissa of vertices

(b) abscissa of foci

(c) eccentricity

(d) directrix

32. If
$$a, b, c$$
 are in AP, then value of $\begin{vmatrix} 1 & 2 & a \\ 2 & 3 & b \\ 3 & 4 & c \end{vmatrix}$ is

(d) none of these

(a)
$$a+c$$
 (b) $2(a+c)$

33. If $A = \begin{bmatrix} i & 0 \\ 0 & i \end{bmatrix}$, $n \in N$ then A^{4n} equals

- (a) $\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ (b) $\begin{bmatrix} i & 0 \\ 0 & i \end{bmatrix}$ (c) $\begin{bmatrix} 0 & i \\ i & 0 \end{bmatrix}$ (d) $\begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$

34. If
$$A = \begin{bmatrix} \cos^2 \theta & \cos \theta \sin \theta \\ \cos \theta \sin \theta & \sin^2 \theta \end{bmatrix}$$
 and $B = \begin{bmatrix} \cos^2 \phi & \cos \phi \sin \phi \\ \cos \phi \sin \phi & \sin^2 \phi \end{bmatrix}$ are two matrices such that

the product AB is the null matrix then $\theta - \phi$ is equal to

(a) 0

(b) multiple of π

(c) an odd multiple of $\frac{\pi}{2}$

(d) none of these

35. The domain of the function
$$f(x) = \sqrt{\log_{0.5} x}$$
 is

- (a) (0, 1]
- (b) $(0, \infty)$
- (c) $(.5, \infty)$
- (d) $[1, \infty)$

- The inverse of the function $f(x) = \frac{e^x e^{-x}}{e^x + e^{-x}} + 2$ is given by **36.**
 - (a) $\log_e \left(\frac{x-2}{x-1}\right)^{1/2}$ (b) $\log_e \left(\frac{x-1}{3-x}\right)^{1/2}$ (c) $\log_e \left(\frac{x}{2-x}\right)^{1/2}$ (d) $\log_e \left(\frac{x-1}{x+1}\right)^{-2}$

- **37.**
 - (a) 0
- (b) 1

- (c) 1
- (d) none of these
- The number of points at which the function $f(x) = |x + 1| + |\cos x| + \tan\left(x + \frac{\pi}{4}\right)$ does not 38. have a derivative in the interval (-1, 2) is
 - (a) 1
- (b) 2

- (d) 4
- $\lim_{x \to 0} \frac{\tan[e^2]x^2 \tan[-e^2]x^2}{\sin^2 x}$ is (where [·] is greatest integer function)
 (a) 0 (b) 8 (c) 15 (d) **39.**

- (d) none of these
- The function $f(x) = [x]^2 [x^2]$ (where [y] is the largest integer $\leq y$) is discontinuous at 40.
 - (a) all integers

(b) all integers except 0 and 1

(c) all integers except 0

- (d) all integers except 1
- If $\int_{1}^{x} f(t) dt = x^{2} + \int_{1}^{1} tf(t) dt$, then $f(1) = \int_{1}^{x} f(t) dt = \int_{1}^{x} f(t) dt$ 41.
 - (a) 0

- (d) none of these
- The area bounded by the curves $x^2 + y^2 \le 1$ and $|x| + |y| \ge 1$ is 43.
 - (a) 2 sq. units
- (b) $\pi + 2$ sq.units
- (c) $\pi 2$ sq. units
- (d) none of these

44. Solution of
$$2y \sin x \frac{dy}{dx} = 2\sin x \cos x - y^2 \cos x, x = \frac{\pi}{2}, y = 1$$
 is given by

(a) $y^2 = \sin x$ (b) $y = \sin^2 x$ (c) $y^2 = \cos x + 1$ (d) none of these

45. The differential equation of all circles which pass through the origin and whose centres lies on y-axis is

(a) $(x^2 - y^2) \frac{dy}{dx} - 2xy = 0$ (b) $(x^2 - y^2) \frac{dy}{dx} + 2xy = 0$

46. If
$$4\hat{i} + 7\hat{j} + 8\hat{k}$$
, $2\hat{i} + 3\hat{j} + 4\hat{k}$ and $2\hat{i} + 5\hat{j} + 7\hat{k}$ are the position vectors of the vertices A, B

(d) $(x^2 - y^2) \frac{dy}{dx} + xy = 0$

and
$$C$$
 of triangle ABC , the position vector of the point where the bisector of $\angle A$ meets BC is

(a) $\frac{2}{3}(-6\hat{i}-8\hat{j}-6\hat{k})$

(b) $\frac{2}{3}(6\hat{i}+8\hat{j}+6\hat{k})$

(c) $\frac{1}{3}(6\hat{i}+13\hat{j}+18\hat{k})$

(d) $\frac{1}{3}(5\hat{i}+12\hat{k})$

(c) $(x^2 - y^2) \frac{dy}{dx} - xy = 0$

- 47. If the difference of two unit vectors is again a unit vector, then the angle between them is

 (a) 30° (b) 40° (c) 60° (d) 90°
- **48.** If $\vec{a}, \vec{b}, \vec{c}$ are three vectors such that $\vec{a} \cdot (\vec{b} + \vec{c}) + \vec{b} \cdot (\vec{c} + \vec{a}) + \vec{c} \cdot (\vec{a} + \vec{b}) = 0$ and $|\vec{a}| = 1, |\vec{b}| = 4, |\vec{c}| = 8$, then $|\vec{a} + \vec{b} + \vec{c}| =$ (a) 13 (b) 81 (c) 9 (d) 5
- 49. The coordinates of the centre of the sphere (x + 1)(x + 3) + (y 2)(y 4) + (z + 1)(z + 3) = 0 are

 (a) 1, -1, 1) (b) (-1, 1, -1) (c) (2, -3, 2) (d) (-2, 3, -2)
- **50.** The ratio in which the plane $\vec{r} \cdot (\hat{i} 2\hat{j} + 3\hat{k}) = 17$ divides the line joining the points $-2\hat{i} + 4\hat{j} + 7\hat{k}$ and $3\hat{i} 5\hat{j} + 8\hat{k}$ is

 (a) 1:5

 (b) 1:10

 (c) 3:5

 (d) 3:10
- Workers work in three shifts I, II, III in a factory. Their wages are in the ratio 4:5:6 depending upon the shift. Number of workers in the shifts are in the ratio 3:2:1. If total number of workers working is 1500 and wages per worker in shift I is Rs. 400. Then mean wage of a worker is
 - (a) Rs. 467 (b) Rs. 500 (c) Rs. 600 (d) Rs. 400

52.	•	bag contains 5 brown socks and 4 white socks. A man selects two socks from the bag ithout replacement. The probability that the selected socks will be of the same colour, is					
	(a) $\frac{5}{108}$	(b) $\frac{1}{6}$	(c) $\frac{5}{18}$	(d) $\frac{4}{9}$			
53.		2 ships in every 10, s	sinks. The probability th	at out of 5 ships expect	ed to		

- (a) $\frac{2944}{3125}$ (b) $\frac{2946}{3125}$ (c) $\frac{2945}{3125}$ (d) none of these
- A body is projected vertically upwards from a tower of height 192 ft. If it strikes the ground in 6 seconds, then the velocity with which the body is projected is

 (a) 64 ft./sec

 (b) 32 ft./sec

 (c) 16 ft./sec

 (d) none of these
- 55. In a projectile motion horizontal range R is maximum, then relation between height H and R
 - (a) $H = \frac{R}{2}$ (b) $H = \frac{R}{4}$ (c) H = 2R (d) $H = \frac{R}{8}$
- **56.** The mean and variance of a random variable X having a binomial distribution are 4 and 2 respectively. Then, P(X = 1) is
 - (a) $\frac{1}{32}$ (b) $\frac{1}{16}$ (c) $\frac{1}{8}$
- 57. Let $f: R \to R$ be a function defined by $f(x) = \max\{x, x^3\}$. The set of all points where f(x) is not differentiable is

 (a) $\{-1, 1\}$ (b) $\{-1, 0\}$ (c) $\{0, 1\}$ (d) $\{-1, 0, 1\}$
 - 3. $\int xf'(ax^2+b) f(ax^2+b)^{\frac{1}{2}} dx =$

58.

- (a) $\frac{1}{3a} \int (ax^2 + b)^{\frac{3}{2}} + C$ (b) $\frac{x \int (ax^2 + b)^{\frac{3}{2}}}{3} + C$
- (c) $\frac{f(ax^2+b)^3}{3a} + C$ (d) none of these
- **59.** If $\sin \alpha + \sin \beta = a$ and $\cos \alpha + \cos \beta = b$, then value of $\tan \left(\frac{\alpha \beta}{2} \right)$ is
 - (a) $\sqrt{\frac{4+(a^2+b^2)}{a^2+b^2}}$ (b) $\sqrt{\frac{4-(a^2+b^2)}{a^2+b^2}}$ (c) $\sqrt{\frac{a^2+b^2}{4-(a^2+b^2)}}$ (d) none of these

- 60. The vertices of a triangle ABC are (1, 1), (4, -2) and (5, 5) respectively. The equation of perpendicular dropped from C to the internal bisector of angle A is (a) y - 5 = 0(b) x - 5 = 0(c) 2x + 3y - 7 = 0 (d) none of these
- **61.** Two finite sets have m and n elements. The total number of subsets of the first set is 56 more than the total number of subsets of the second set. The values of m and n are
 - (a) 7, 6

(c) 5, 1

- **62.** If $\left(\frac{1+i}{1-i}\right)^x = 1$, then
 - (a) x = 4n, where n is any positive integer
 - (b) x = 2n, where n is any positive integer
 - (c) x = 4n + 1, where n is any positive integer
 - (d) x = 2n + 1, where n is any positive integer
- Entrance 1 If z = x - iy and $z^{1/3} = p + iq$, then $\left(\frac{x}{p} + \frac{y}{q}\right)/(p^2 + q^2)$ is equal to
 - (a) 2

(b) - 1

(c) 2

- (d) 1
- If α and β are different complex numbers with $|\beta| = 1$, then $\left| \frac{\beta \alpha}{1 \alpha \overline{\beta}} \right|$ is equal to 64.
 - (a) 0

(b) 1/2

- (d) 2
- **65.** If a, b, c are in A.P., then the straight line ax + by + c = 0 will always pass through the point
 - (a) (-1, -2)

(b) (1, -2)

(c)(-1,2)

- (d)(1,2)
- **66.** If $\frac{S_n}{S_m} = \frac{n^2}{m^2}$ (where S_k is the sum of first k terms of an A.P., a_1, a_2, a_3, \ldots), then the value of

 $\frac{a_{m+1}}{a_{n+1}}$ in terms of m and n will be

(a) $\frac{(2m+1)^2}{(2n+1)^2}$

(b) $\frac{(2n+1)^2}{(2m+1)^2}$

(c) $\frac{(2m-1)^2}{(2n-1)^2}$

- (d) $\frac{(2n-1)^2}{(2m-1)^2}$
- **67.** If $|x^2 x 6| = x + 2$, then the values of x are
 - (a) 2, 2, -4

(b) - 2, 2, 4

(c)
$$3, 2, -2$$

68. The solution of the equation $2x^2 + 3x - 9 \le 0$ is given by

(a)
$$\frac{3}{2} \le x \le 3$$

(b)
$$-3 \le x \le \frac{3}{2}$$

$$(c) -3 \le x \le 3$$

(d)
$$\frac{3}{2} \le x \le 2$$

69. The value of a for which the quadratic equation $3x^2 + 2(a^2 + 1)x + (a^2 - 3a + 2) = 0$ possesses roots with opposite sign, lies in

(a)
$$(-\infty, 1)$$

(b)
$$(-\infty, 0)$$

(d)
$$\left(\frac{3}{2}, 2\right)$$

70. The number of ways in which five identical balls can be distributed among ten different boxes such that no box contains more than one ball, is

(b)
$$\frac{10!}{5!}$$

(c)
$$\frac{10!}{(5!)^2}$$

71. Eight chairs are numbered 1 to 8. Two women and three men wish to occupy one chair each. First the women choose the chairs from amongst the chairs marked 1 to 4 and then men select the chairs from amongst the remaining. The number of possible arrangements is

(a)
$${}^{6}C_{3} \times {}^{4}C_{2}$$

(b)
$${}^4C_3 \times {}^4C_3$$

(c)
$${}^4P_2 \times {}^4P_3$$

72. If $\frac{T_2}{T_3}$ in the expansion of $(a+b)^n$ and $\frac{T_3}{T_4}$ in the expansion of $(a+b)^{n+3}$ are equal, then n=1

73. If *n* is a positive integer and $C_k = {}^n C_k$, then the value of $\sum_{k=1}^n k^3 \left(\frac{C_k}{C_{k-1}}\right)^2 =$

(a)
$$\frac{n(n+1)(n+2)}{12}$$

(b)
$$\frac{n(n+1)^2}{12}$$

(c)
$$\frac{n(n+2)^2(n+1)}{12}$$

74. If $y = x - \frac{x^2}{2} + \frac{x^3}{3} + \dots \infty$, then $x = \frac{x^2}{2} + \frac{x^3}{3} + \dots \infty$

(a)
$$y - \frac{y^2}{2} + \frac{y^3}{3} + \dots \infty$$

(b)
$$y + \frac{y^2}{2!} + \frac{y^3}{3!} + \dots \infty$$

(c)
$$1+y+\frac{y^2}{2!}+\frac{y^3}{3!}+...\infty$$

(d) none of these

If α , β are the roots of the equation $x^2 - px + q = 0$, then $\log_e (1 + px + qx^2) =$ *75*.

(a)
$$(\alpha + \beta)x - \frac{\alpha^2 + \beta^2}{2}x^2 + \frac{\alpha^3 + \beta^3}{3}x^3 - ...\infty$$

(b)
$$(\alpha + \beta)x - \frac{(\alpha + \beta)^2}{2}x^2 + \frac{(\alpha + \beta)^3}{3}x^3 - ... \infty$$

(c)
$$(\alpha + \beta)x - \frac{\alpha^2 + \beta^2}{2}x^2 + \frac{\alpha^3 + \beta^3}{3}x^3 + ... \infty$$

(d) none of these

If $A = \begin{vmatrix} \sin(\theta + \alpha) & \cos(\theta + \alpha) & 1 \\ \sin(\theta + \beta) & \cos(\theta + \beta) & 1 \end{vmatrix}$, then

(a)
$$A = 0$$
 for all θ

(b) A is an odd Function of θ

Entrance

(c)
$$A = 0$$
 for $\theta = \alpha + \beta + \gamma$

(d) A is independent of θ

 $\sin x \cos x \cos x$ $\begin{vmatrix} \sin x & \cos x \\ \cos x & \sin x \end{vmatrix} = 0 \text{ in the internal } -\frac{\pi}{4} \le x \le \frac{\pi}{4} \text{ is}$ The number of distinct real roots of 77. $\cos x$ $\cos x$

(b)
$$2$$

Matrix A is such that $A^2 = 2A - I$, where I is the identity matrix. Then for $n \ge 2$, $A^n = 1$ **78.**

(a)
$$nA - (n-1)I$$

(b)
$$nA - I$$

(c)
$$2^{n-1}A - (n-1)I$$

(d)
$$2^{n-1}A-I$$

The value of k, for which $(\cos x + \sin x)^2 + k \sin x \cos x - 1 = 0$ is an identity, is **79.**

$$(a) - 1$$

$$(b) - 2$$

80. If tan(A-B)=1, $sec(A+B)=\frac{2}{\sqrt{3}}$, then the smallest positive value of B is

(a)
$$\frac{25}{24}\pi$$

(b)
$$\frac{19}{24}\pi$$
 (c) $\frac{13}{24}\pi$

(c)
$$\frac{13}{24}\pi$$

(d) $\frac{11}{24}\pi$

The solution of the equation $\cos^2 x - 2\cos x = 4\sin x - \sin 2x$, $(0 \le x \le \pi)$ is 81.

(a)
$$\pi - \cot^{-1}\left(\frac{1}{2}\right)$$

(b)
$$\pi - \tan^{-1} \mathbf{Q}$$

(c)
$$\pi + \tan^{-1} \left(-\frac{1}{2} \right)$$

(d) None of these

- Entrance Let $f(x) = \cos \sqrt{x}$, then which of the following is true 82.
 - (a) f(x) is periodic with period $\sqrt{2}\pi$
 - (b) f(x) is periodic with period $\sqrt{\pi}$
 - (c) f(x) is periodic with period $4\pi^2$
 - (d) f(x) is not a periodic function
- In a triangle ABC, $\angle B = \frac{\pi}{3}$ and $\angle C = \frac{\pi}{4}$ and D divides BC internally in the ratio 1:3. Then $\frac{\sin \angle BAD}{\sin \angle CAD}$ is equal to

(a)
$$\frac{1}{3}$$

(b)
$$\frac{1}{\sqrt{3}}$$

(c)
$$\frac{1}{\sqrt{6}}$$

(d)
$$\sqrt{\frac{2}{3}}$$

If $\theta = \sin^{-1} x + \cos^{-1} x - \tan^{-1} x$, $x \ge 0$, then the smallest interval in which θ lies is given by

(a)
$$\frac{\pi}{4} \le \theta \le \frac{3\pi}{4}$$

(b)
$$0 < \theta < \pi$$

$$(c) -\frac{\pi}{4} \le \theta \le 0$$

(b)
$$0 < \theta < \pi$$

(d) $\frac{\pi}{4} \le \theta \le \frac{\pi}{2}$

- If $\sin^{-1} x + \sin^{-1} y + \sin^{-1} z = \frac{3\pi}{2}$, then the value of $x^{100} + y^{100} + z^{100} \frac{9}{x^{101} + y^{101} + z^{101}}$ is equal to
 - (a) 0

- (b) 3
- (c) 3
- (d) 9
- Three vertices of parallelogram taken in order, are (1, 3), (2, 0) and (5, 1). Then its fourth 86. vertex is
 - (a)(3,3)
- (b) (4, 4)
- (c)(4,0)
- (d)(0,-4)
- The line joining two points A(2, 0) and B(3, 1) is rotated about A in anti-clockwise **87.** direction through an angle of 15°. The equation of the line in the new position, is
 - (a) $\sqrt{3}x y 2\sqrt{3} = 0$

(b)
$$x - \sqrt{3}y - 2 = 0$$

(c)
$$\sqrt{3}x + y - 2\sqrt{3} = 0$$

(d)
$$x + \sqrt{3} y - 2 = 0$$

- In the equation $y y_1 = m(x x_1)$ if m and x_1 are fixed and different lines are drawn for 88. different values of y_1 , then
 - (a) the lines will pass through a single point
 - (b) there will be a set of parallel lines
 - (c) there will be one line only
 - (d) none of these
- The intercept of a line between the coordinate axes is divided by point (-5, 4) in the ratio 89. 1:2. The equation of the line will be
 - (a) 5x-8y+60=0

(b) 8x - 5y + 60 = 0

(c) 2x-5y+30=0

- (d) None of these
- The equation $\sqrt{(x-2)^2 + y^2} + \sqrt{(x+2)^2 + y^2} = 4$ represents a 90. Entrance
 - (a) circle
 - (b) pair of straight lines
 - (c) parabola
 - (d) ellipse
- The straight line (x-2)+(y+3) = 0 cuts the circle $(x-2)^2 + (y-3)^2 = 11$ at 91.
 - (a) no points

(b) one point

(c) two points

- (d) none of these
- 92. A circle lies in the second quadrant and touches both the axes. If the radius of the circle be 4, then its equation is
 - (a) $x^2 + y^2 + 8x + 8y + 16 = 0$
- (b) $x^2 + y^2 + 8x 8y + 16 = 0$
- (c) $x^2 + y^2 8x + 8y + 16 = 0$
- (d) $x^2 + y^2 8x 8y + 16 = 0$
- 93. The locus of the intersection point of $x\cos\alpha - y\sin\alpha = a$ and $x\sin\alpha - y\cos\alpha = b$ is
 - (a) ellipse

(b) hyperbola

(c) parabola

- (d) none of these
- $y^{2}-2x-2y+5=0$ represents 94.
 - (a) a circle whose centre is (1, 1)
- (b) a parabola whose focus is (1, 2)
- (c) a parabola whose directrix is $x = \frac{3}{2}$
- (d) a parabola whose directrix is $x = -\frac{1}{2}$
- The curve described parametrically by $x = t^2 + t + 1$. $y = t^2 t + 1$ represents 95.
 - (a) a pair of straight lines
- (b) an ellipse

(c) a parabola

(d) a hyperbola

- If the module of the vectors \vec{a} , \vec{b} , \vec{c} are 3, 4, 5 respectively and \vec{a} and $\vec{b} + \vec{c}$, \vec{b} and $\vec{c} + \vec{a}$, \vec{c} 96. and $\vec{a} + \vec{b}$ are mutually perpendicular, then the modulus of $\vec{a} + \vec{b} + \vec{c}$ is
 - (a) $\sqrt{12}$

(b) 12

(c) $5\sqrt{2}$

- (d) 50
- What will be the length of longer diagonal of the parallelogram constructed on $5\vec{a} + 2\vec{b}$ and $\vec{a} - 3\vec{b}$, if it is given that $|\vec{a}| = 2\sqrt{2}$, $|\vec{b}| = 3$ and angle between \vec{a} and \vec{b} is $\frac{\pi}{4}$
 - (a) 15

(b) $\sqrt{113}$

(c) $\sqrt{593}$

- (d) $\sqrt{369}$
- Image point of (5, 4, 6) in the plane x+y+2z-15=0 is 98
 - (a) (3, 2, 2)

(b)(2,3,2)

(c)(2,2,3)

- (d) (-5, -4, -6)
- If a line makes angles α , β , γ , δ with the four diagonals of a cube, then the value of $\cos^2 \alpha + \cos^2 \beta + \cos^2 \gamma + \cos^2 \delta$ is equal to
 - (a) 1

(b) 4/3

(c) Variable

- (d) none of these
- **100.** Suppose $f(x) = (x+1)^2$ for $x \ge -1$. If g(x) is the function whose graph is the reflection of the graph of f(x) with respect to the line y = x, then g(x) equals
 - (a) $-\sqrt{x} 1, x \ge 0$

(b) $\frac{1}{(x+1)^2}$, x > -1(d) $\sqrt{x} - 1$, $x \ge 0$

(c) $\sqrt{x+1}$, $x \ge -1$

